Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 751
Filtrar
1.
Autophagy ; : 1-18, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38566321

RESUMO

Lyssaviruses are well-known worldwide and often cause fatal encephalitis. Previous studies have shown that autophagy is beneficial for the replication of rabies virus (RABV), the representative lyssavirus, but the detailed mechanism remains obscure. In this study, we showed that the rabies virus matrix protein (RABV-M) used its PPxY motif to interact with the E3 ubiquitin-protein ligase NEDD4. NEDD4 then recruited MAP1LC3/LC3 via its LC3-interacting region (LIR). Interestingly, after binding to the ubiquitinated RABV-M, NEDD4 could bind more LC3 and enhance autophagosome accumulation, while NEDD4 knockdown significantly reduced M-induced autophagosome accumulation. Further study revealed that RABV-M prevented autophagosome-lysosome fusion and facilitated viral budding. Inhibition of RABV-M-induced autophagosome accumulation reduced the production of extracellular virus-like particles. We also found that M proteins of most lyssaviruses share the same mechanism to accumulate autophagosome by hijacking NEDD4. Collectively, this study revealed a novel strategy for lyssaviruses to achieve efficient viral replication by exploiting the host autophagy system.Abbreviations: ABLV: Australian bat lyssavirus; ATG5: autophagy related 5; Baf A1:bafilomycin A1;co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI:4',6-diamidino-2'-phenylindole; DMSO: dimethyl sulfoxide; EBLV:European bat lyssavirus; GFP: green fluorescent protein; GST:glutathione S-transferase; hpi: hours post-infection; hpt: hourspost-transfection; LIR: LC3-interactingregion;MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; mCherry:red fluorescent protein; MOI: multiplicity of infection; NC: negativecontrol; MVB: multivesicular body; NEDD4: neural precursorcell-expressed developmentally down-regulated 4; RABV: rabies virus;SQSTM1/p62: sequestosome 1; VLP: virus-like particle; VPS4B: vacuolarprotein sorting 4B; TEM: transmission electron microscopy; WB:western blotting; WT: wild-type; µm: micrometer; µM: micromole.

2.
Vaccine ; 42(12): 3075-3083, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38584060

RESUMO

As the major outer membrane protein (OMP) presents in the Pasteurella multocida envelope, OmpH was frequently expressed for laboratory assessments of its immunogenicity against P. multocida infections, but the results are not good. In this study, we modified OmpH with dendritic cell targeting peptide (Depeps) and/or Salmonella FliCd flagellin, and expressed three types of recombinant proteins with the MBP tag (rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, rFliC-OmpH-MBP). Assessments in mouse models revealed that vaccination with rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, or rFliC-OmpH-MBP induced significant higher level of antibodies as well as IFN-γ and IL-4 in murine sera than vaccination with rOmpH-MBP (P < 0.5). Vaccination with the three modified proteins also provided increased protection (rDepeps-FliC-OmpH-MBP, 70 %; rDepeps-OmpH-MBP, 50 %; rFliC-OmpH-MBP, 60 %) against P. multocida serotype D compared to vaccination with rOmpH-MBP (30 %). In mice vaccinated with different types of modified OmpHs, a significantly decreased bacterial strains were recovered from bloods, lungs, and spleens compared to rOmpH-MBP-vaccinated mice (P < 0.5). Notably, our assessments also demonstrated that vaccination with rDepeps-FliC-OmpH-MBP provided good protection against infections caused by a heterogeneous group of P. multocida serotypes (A, B, D). Our above findings indicate that modification with DCpep and Salmonella flagellin could be used as a promising strategy to improve vaccine effectiveness.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Camundongos , Sorogrupo , Infecções por Pasteurella/prevenção & controle , Flagelina/metabolismo , Proteínas da Membrana Bacteriana Externa , Peptídeos/metabolismo , Células Dendríticas , Vacinas Bacterianas
3.
ACS Infect Dis ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581387

RESUMO

Exploring novel antimicrobial drugs and strategies has become essential to the fight MRSA-associated infections. Herein, we found that membrane-disrupted repurposed antibiotic salifungin had excellent bactericidal activity against MRSA, with limited development of drug resistance. Furthermore, adding salifungin effectively decreased the minimum inhibitory concentrations of clinical antibiotics against Staphylococcus aureus. Evaluations of the mechanism demonstrated that salifungin disrupted the level of H+ and K+ ions using hydrophilic and lipophilic groups to interact with bacterial membranes, causing the disruption of bacterial proton motive force followed by impacting on bacterial the function of the respiratory chain and adenosine 5'-triphosphate, thereby inhibiting phosphatidic acid biosynthesis. Moreover, salifungin also significantly inhibited the formation of bacterial biofilms and eliminated established bacterial biofilms by interfering with bacterial membrane potential and inhibiting biofilm-associated gene expression, which was even better than clinical antibiotics. Finally, salifungin exhibited efficacy comparable to or even better than that of vancomycin in the MRSA-infected animal models. In conclusion, these results indicate that salifungin can be a potential drug for treating MRSA-associated infections.

4.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607043

RESUMO

Mycoplasmopsis bovis is a causative agent of crucial diseases in both dairy and beef cattle leading to substantial economic losses. However, limited control measures for M. bovis-related diseases exist due to a lack of understanding about the virulence factors of this pathogen, a common challenge in mycoplasma research. Consequently, this study aimed to characterize a novel nucleomodulin as a virulence-related factor of M. bovis. Employing bioinformatic tools, we initially predicted MbovP467 to be a secreted protein with a nuclear localization signal based on SignalP scores and the cNLS (Nuclear Localization Signal) Mapper, respectively. Subsequently, the MbovP467 gene was synthesized and cloned into a pEGFP plasmid with EGFP labeling to obtain a recombinant plasmid (rpEGFP-MbovP467) and then was also cloned in pET-30a with a consideration for an Escherichia coli codon bias and expressed and purified for the production of polyclonal antibodies against the recombinant MbovP467 protein. Confocal microscopy and a Western blotting assay confirmed the nuclear location of MbovP467 in bovine macrophages (BoMacs). RNA-seq data revealed 220 up-regulated and 20 down-regulated genes in the rpEGFP-MbovP467-treated BoMac group compared to the control group (pEGFP). A GO- and KEGG-enrichment analysis identified associations with inflammatory responses, G protein-coupled receptor signaling pathways, nuclear receptor activity, sequence-specific DNA binding, the regulation of cell proliferation, IL-8, apoptotic processes, cell growth and death, the TNF signaling pathway, the NF-κB signaling pathway, pathways in cancer, and protein families of signaling and cellular processes among the differentially expressed up-regulated mRNAs. Further experiments, investigating cell viability and the inflammatory response, demonstrated that MbovP467 reduces BoMac cell viability and induces the mRNA expression of IL-1ß, IL-6, IL-8, TNF-α, and apoptosis in BoMac cells. Further, MbovP467 increased the promoter activity of TNF-α. In conclusion, this study identified a new nucleomodulin, MbovP467, for M. bovis, which might have an important role in M. bovis pathogenesis.


Assuntos
Interleucina-8 , Fator de Necrose Tumoral alfa , Animais , Bovinos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-8/metabolismo , Sinais de Localização Nuclear/metabolismo , Regulação da Expressão Gênica , NF-kappa B/metabolismo
5.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656455

RESUMO

Porcine epidemic diarrhea (PED) is a serious disease in piglets that leads to high mortality. An effective measure that provides higher IgA levels in the intestine and milk is required to decrease losses. Porcine epidemic diarrhea virus (PEDV) was dissolved in calcium alginate (Alg) and combined with chitosan (CS) via electrostatic interactions between cationic chitosan and anionic alginate to create a porous gel (Alg-CS+PEDV). The gel was used to immunize mice orally or in combination with subcutaneous injections of inactivated PEDV vaccine. At 12 and 24 days after immunization, levels of IgA and IgG in Alg-CS+PEDV were higher than with normal PEDV oral administration. At 24 days after immunization, the concentration of IFN-γ in Alg-CS+PEDV was higher than with normal PEDV oral administration. Furthermore, oral administration combining subcutaneous immunization induced higher levels of IgG and IgA than oral administration alone. Our study provides a new method for the preparation and administration of oral vaccines to achieve enhanced mucosal immunity against PEDV.


Assuntos
Alginatos , Anticorpos Antivirais , Quitosana , Imunidade nas Mucosas , Imunoglobulina A , Imunoglobulina G , Vírus da Diarreia Epidêmica Suína , Vacinas Virais , Animais , Administração Oral , Vírus da Diarreia Epidêmica Suína/imunologia , Alginatos/administração & dosagem , Quitosana/administração & dosagem , Camundongos , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Anticorpos Antivirais/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Suínos , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Feminino , Géis/administração & dosagem , Camundongos Endogâmicos BALB C , Interferon gama/imunologia , Ácido Glucurônico/administração & dosagem , Ácidos Hexurônicos/administração & dosagem
6.
Database (Oxford) ; 20242024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531599

RESUMO

'Superbugs' have received increasing attention from researchers, such as ESKAPE bacteria (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.), which directly led to about 1 270 000 death cases in 2019. Recently, phage peptidoglycan hydrolases (PGHs)-derived antimicrobial peptides were proposed as new antibacterial agents against multidrug-resistant bacteria. However, there is still a lack of methods for mining antimicrobial peptides based on phages or phage PGHs. Here, by using a collection of 6809 genomes of ESKAPE isolates and corresponding phages in public databases, based on a unified annotation process of all the genomes, PGHs were systematically identified, from which peptides were mined. As a result, a total of 12 067 248 peptides with high antibacterial activities were respectively determined. A user-friendly tool was developed to predict the phage PGHs-derived antimicrobial peptides from customized genomes, which also allows the calculation of peptide phylogeny, physicochemical properties, and secondary structure. Finally, a user-friendly and intuitive database, ESKtides (http://www.phageonehealth.cn:9000/ESKtides), was designed for data browsing, searching and downloading, which provides a rich peptide library based on ESKAPE prophages and phages. Database URL:  10.1093/database/baae022.


Assuntos
Peptídeos Antimicrobianos , Bacteriófagos , Bactérias , Klebsiella pneumoniae , Antibacterianos/uso terapêutico
7.
J Neuroinflammation ; 21(1): 76, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532383

RESUMO

Japanese encephalitis virus (JEV) is a neurotropic pathogen that causes lethal encephalitis. The high susceptibility and massive proliferation of JEV in neurons lead to extensive neuronal damage and inflammation within the central nervous system. Despite extensive research on JEV pathogenesis, the effect of JEV on the cellular composition and viral tropism towards distinct neuronal subtypes in the brain is still not well comprehended. To address these issues, we performed single-cell RNA sequencing (scRNA-seq) on cells isolated from the JEV-highly infected regions of mouse brain. We obtained 88,000 single cells and identified 34 clusters representing 10 major cell types. The scRNA-seq results revealed an increasing amount of activated microglia cells and infiltrating immune cells, including monocytes & macrophages, T cells, and natural killer cells, which were associated with the severity of symptoms. Additionally, we observed enhanced communication between individual cells and significant ligand-receptor pairs related to tight junctions, chemokines and antigen-presenting molecules upon JEV infection, suggesting an upregulation of endothelial permeability, inflammation and antiviral response. Moreover, we identified that Baiap2-positive neurons were highly susceptible to JEV. Our findings provide valuable clues for understanding the mechanism of JEV induced neuro-damage and inflammation as well as developing therapies for Japanese encephalitis.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Japonesa (Subgrupo) , Encefalite Japonesa , Camundongos , Animais , Tropismo Viral , Sistema Nervoso Central/patologia , Encefalite Japonesa/patologia , Inflamação , Análise de Sequência de RNA
8.
Viruses ; 16(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543829

RESUMO

Pseudorabies is an acute and febrile infectious disease caused by pseudorabies virus (PRV), a member of the family Herpesviridae. Currently, PRV is predominantly endemoepidemic and has caused significant economic losses among domestic pigs. Other animals have been proven to be susceptible to PRV, with a mortality rate of 100%. In addition, 30 human cases of PRV infection have been reported in China since 2017, and all patients have shown severe neurological symptoms and eventually died or developed various neurological sequelae. In these cases, broad-spectrum anti-herpesvirus drugs and integrated treatments were mostly applied. However, the inhibitory effect of the commonly used anti-herpesvirus drugs (e.g., acyclovir, etc.) against PRV were evaluated and found to be limited in this study. It is therefore urgent and important to develop drugs that are clinically effective against PRV infection. Here, we constructed a high-throughput method for screening antiviral drugs based on fluorescence-tagged PRV strains and multi-modal microplate readers that detect fluorescence intensity to account for virus proliferation. A total of 2104 small molecule drugs approved by the U.S. Food and Drug Administration (FDA) were studied and validated by applying this screening model, and 104 drugs providing more than 75% inhibition of fluorescence intensity were selected. Furthermore, 10 drugs that could significantly inhibit PRV proliferation in vitro were strictly identified based on their cytopathic effects, virus titer, and viral gene expression, etc. Based on the determined 50% cytotoxic concentration (CC50) and 50% inhibitory concentration (IC50), the selectivity index (SI) was calculated to be 26.3-3937.2 for these 10 drugs, indicating excellent drugability. The antiviral effects of the 10 drugs were then assessed in a mouse model. It was found that 10 mg/kg brincidofovir administered continuously for 5 days provided 100% protection in mice challenged with lethal doses of the human-origin PRV strain hSD-1/2019. Brincidofovir significantly attenuated symptoms and pathological changes in infected mice. Additionally, time-of-addition experiments confirmed that brincidofovir inhibited the proliferation of PRV mainly by interfering with the viral replication stage. Therefore, this study confirms that brincidofovir can significantly inhibit PRV both in vitro and in vivo and is expected to be an effective drug candidate for the clinical treatment of PRV infections.


Assuntos
Citosina/análogos & derivados , Herpesviridae , Herpesvirus Suídeo 1 , Organofosfonatos , Pseudorraiva , Doenças dos Suínos , Humanos , Animais , Camundongos , Suínos , Herpesvirus Suídeo 1/genética , Pseudorraiva/patologia , Replicação Viral , Proliferação de Células , Doenças dos Suínos/patologia
9.
Vaccines (Basel) ; 12(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38543938

RESUMO

Enterotoxigenic Escherichia coli (ETEC) causes severe diarrhea in piglets. The current primary approach for ETEC prevention and control relies on antibiotics, as few effective vaccines are available. Consequently, an urgent clinical demand exists for developing an effective vaccine to combat this disease. Here, we utilized food-grade Lactococcus lactis NZ3900 and expression plasmid pNZ8149 as live vectors, together with the secreted expression peptide Usp45 and the cell wall non-covalent linking motif LysM, to effectively present the mutant LTA subunit, the LTB subunit of heat-labile enterotoxin, and the FaeG of F4 pilus on the surface of recombinant lactic acid bacteria (LAB). Combining three recombinant LAB as a live vector oral vaccine, we assessed its efficacy in preventing F4+ ETEC infection. The results demonstrate that oral immunization conferred effective protection against F4+ ETEC infection in mice and piglets lacking maternal antibodies during weaning. Sow immunization during late pregnancy generated significantly elevated antibodies in colostrum, which protected piglets against F4+ ETEC infection during lactation. Moreover, booster immunization on piglets during lactation significantly enhanced their resistance to F4+ ETEC infection during the weaning stage. This study highlights the efficacy of an oral LAB vaccine in preventing F4+ ETEC infection in piglets by combining the sow immunization and booster immunization of piglets, providing a promising vaccination strategy for future prevention and control of ETEC-induced diarrhea in piglets.

10.
J Gen Virol ; 105(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506716

RESUMO

PCV2 belongs to the genus Circovirus in the family Circoviridae, whose genome is replicated by rolling circle replication (RCR). PCV2 Rep is a multifunctional enzyme that performs essential functions at multiple stages of viral replication. Rep is responsible for nicking and ligating single-stranded DNA and unwinding double-stranded DNA (dsDNA). However, the structure and function of the Rep are still poorly understood, which significantly impedes viral replication research. This study successfully resolved the structure of the PCV2 Rep ATPase domain (PRAD) using X-ray crystallography. Homologous structure search revealed that Rep belonged to the superfamily 3 (SF3) helicase, and multiple conserved residues were identified during sequence alignment with SF3 family members. Simultaneously, a hexameric PRAD model was generated for analysing characteristic structures and sites. Mutation of the conserved site and measurement of its activity showed that the hallmark motifs of the SF3 family influenced helicase activity by affecting ATPase activity and ß-hairpin just caused the loss of helicase activity. The structural and functional analyses of the PRAD provide valuable insights for future research on PCV2 replication and antiviral strategies.


Assuntos
Circovirus , Suínos , Animais , Circovirus/genética , Adenosina Trifosfatases/genética , Cristalografia por Raios X , DNA Helicases/genética , Replicação do DNA
11.
Vet Microbiol ; 292: 110046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471428

RESUMO

Pasteurella multocida is a leading cause of respiratory disorders in pigs. However, the genotypes and antimicrobial resistance characteristics of P. multocida from pigs in China have not been reported frequently. In this study, we investigated 381 porcine strains of P. multocida collected in China between 2013 and 2022. These strains were assigned to capsular genotypes A (69.55%, n = 265), D (27.82%, n =106), and F (2.62%, n = 10); or lipopolysaccharide genotypes L1 (1.31%, n = 5), L3 (24.41%, n = 93), and L6 (74.28%, n = 283). Overall, P. multocida genotype A:L6 (46.46%) was the most-commonly identified type, followed by D:L6 (27.82%), A:L3 (21.78%), F:L3 (2.62%), and A:L1 (1.31%). Antimicrobial susceptibility testing showed that a relatively high proportion of strains were resistant to tetracycline (66.67%, n = 254), and florfenicol (35.17%, n = 134), while a small proportion of strains showed resistance phenotypes to enrofloxacin (10.76%, n = 41), ampicillin (8.40%, n = 32), tilmicosin (7.09%, n = 27), and ceftiofur (2.89%, n = 11). Notably, Illumina short-read and Nanopore long-read sequencing identified a chromosome-borne tigecycline-resistance gene cluster tmexCD3-toprJ1 in P. multocida. The structure of this cluster was highly similar to the respective structures found in several members of Proteus or Pseudomonas. It is assumed that the current study identified the tmexCD3-toprJ1 cluster for the first time in P. multocida.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Doenças dos Suínos , Suínos , Animais , Pasteurella multocida/genética , Tigeciclina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Enrofloxacina , Família Multigênica , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/tratamento farmacológico , Doenças dos Suínos/tratamento farmacológico
12.
Microbiol Res ; 283: 127647, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452551

RESUMO

The Type VI secretion system (T6SS) functions as a protein transport nanoweapon in several stages of bacterial life. Even though bacterial competition is the primary function of T6SS, different bacteria exhibit significant variations. Particularly in Extraintestinal pathogenic Escherichia coli (ExPEC), research into T6SS remains relatively limited. This study identified the uncharacterized gene evfG within the T6SS cluster of ExPEC RS218. Through our experiments, we showed that evfG is involved in T6SS expression in ExPEC RS218. We also found evfG can modulate T6SS activity by competitively binding to c-di-GMP, leading to a reduction in the inhibitory effect. Furthermore, we found that evfG can recruit sodA to alleviate oxidative stress. The research shown evfG controls an array of traits, both directly and indirectly, through transcriptome and additional tests. These traits include cell adhesion, invasion, motility, drug resistance, and pathogenicity of microorganisms. Overall, we contend that evfG serves as a multi-functional regulator for the T6SS and several crucial activities. This forms the basis for the advancement of T6SS function research, as well as new opportunities for vaccine and medication development.


Assuntos
Proteínas de Escherichia coli , Escherichia coli Extraintestinal Patogênica , Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Escherichia coli Extraintestinal Patogênica/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Virulência , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
13.
Microorganisms ; 12(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543626

RESUMO

Escherichia coli (E. coli) is an important foodborne pathogen and a biomarker for monitoring antimicrobial resistance. Investigating the prevalence of E. coli in the poultry industry holds great importance, particularly in Henan province, a major poultry-producing region in China. Here, we investigated the antimicrobial resistance (AMR) phenotypes of E. coli strains obtained from the poultry industry in Henan, China. A total of 344 E. coli strains were isolated from 638 samples collected from seven farms, three slaughterhouses, and ten terminal markets. Approximately 96.4%, 81.7%, and 52.5% of the isolates from the farms, slaughterhouses, and terminal markets exhibited multidrug resistance. Whole-genome sequencing was performed on 169 strains to reveal their genomic characteristics. The sequence type (ST) analysis revealed that ST10 and ST156 were the most frequent types within the poultry supply chain, whereas ST10 and ST162 were commonly found across the farms, slaughterhouses, and terminal markets. Fourteen ST10 E. coli strains belonged to phylogenetic group A, while fifteen ST165 and six ST162 E. coli strains belonged to phylogenetic group B1. In addition, several antimicrobial resistance genes and virulence factor genes were identified. The blaNDM-5 gene mediated carbapenem resistance in two E. coli strains, while mcr-1-mediated colistin resistance was detected in nine E. coli strains. Phylogenetic group A exhibited fewer virulence genes compared to other groups of E. coli. Plasmid replicons, such as IncFIB (AP001918), IncX1, IncFIC (FII), and IncFII (pHN7A8), were frequently observed. These findings provide valuable insights into the current AMR profiles of E. coli strains isolated from the poultry industry in Central China and highlight the need to implement good manufacturing practices and reduce antibiotic usage to mitigate potential risks associated with E. coli.

14.
Autophagy ; : 1-20, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38497494

RESUMO

Streptococcus pneumoniae (S. pneumoniae) represents a major human bacterial pathogen leading to high morbidity and mortality in children and the elderly. Recent research emphasizes the role of extracellular vesicles (EVs) in bacterial pathogenicity. However, the contribution of S. pneumoniae EVs (pEVs) to host-microbe interactions has remained unclear. Here, we observed that S. pneumoniae infections in mice led to severe lung injuries and alveolar epithelial barrier (AEB) dysfunction. Infections of S. pneumoniae reduced the protein expression of tight junction protein OCLN (occludin) and activated macroautophagy/autophagy in lung tissues of mice and A549 cells. Mechanically, S. pneumoniae induced autophagosomal degradation of OCLN leading to AEB impairment in the A549 monolayer. S. pneumoniae released the pEVs that could be internalized by alveolar epithelial cells. Through proteomics, we profiled the cargo proteins inside pEVs and found that these pEVs contained many virulence factors, among which we identified a eukaryotic-like serine-threonine kinase protein StkP. The internalized StkP could induce the phosphorylation of BECN1 (beclin 1) at Ser93 and Ser96 sites, initiating autophagy and resulting in autophagy-dependent OCLN degradation and AEB dysfunction. Finally, the deletion of stkP in S. pneumoniae completely protected infected mice from death, significantly alleviated OCLN degradation in vivo, and largely abolished the AEB disruption caused by pEVs in vitro. Overall, our results suggested that pEVs played a crucial role in the spread of S. pneumoniae virulence factors. The cargo protein StkP in pEVs could communicate with host target proteins and even hijack the BECN1 autophagy initiation pathway, contributing to AEB disruption and bacterial pathogenicity.Abbreviations: AEB: alveolarepithelial barrier; AECs: alveolar epithelial cells; ATG16L1: autophagy related 16 like 1; ATP:adenosine 5'-triphosphate; BafA1: bafilomycin A1; BBB: blood-brain barrier; CFU: colony-forming unit; co-IP: co-immunoprecipitation; CQ:chloroquine; CTRL: control; DiO: 3,3'-dioctadecylox-acarbocyanineperchlorate; DOX: doxycycline; DTT: dithiothreitol; ECIS: electricalcell-substrate impedance sensing; eGFP: enhanced green fluorescentprotein; ermR: erythromycin-resistance expression cassette; Ery: erythromycin; eSTKs: eukaryotic-like serine-threoninekinases; EVs: extracellular vesicles; HA: hemagglutinin; H&E: hematoxylin and eosin; HsLC3B: human LC3B; hpi: hours post-infection; IP: immunoprecipitation; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LC/MS: liquid chromatography-mass spectrometry; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MVs: membranevesicles; NC:negative control; NETs:neutrophil extracellular traps; OD: optical density; OMVs: outer membrane vesicles; PBS: phosphate-buffered saline; pEVs: S.pneumoniaeextracellular vesicles; protK: proteinase K; Rapa: rapamycin; RNAi: RNA interference; S.aureus: Staphylococcusaureus; SNF:supernatant fluid; sgRNA: single guide RNA; S.pneumoniae: Streptococcuspneumoniae; S.suis: Streptococcussuis; TEER: trans-epithelium electrical resistance; moi: multiplicity ofinfection; TEM:transmission electron microscope; TJproteins: tight junction proteins; TJP1/ZO-1: tight junction protein1; TSA: tryptic soy agar; WB: western blot; WT: wild-type.

15.
J Virol ; 98(3): e0185923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38411948

RESUMO

Superinfection exclusion (SIE) is a phenomenon in which a preexisting infection prevents a secondary infection. SIE has been described for several flaviviruses, such as West Nile virus vs Nhumirim virus and Dengue virus vs yellow fever virus. Zika virus (ZIKV) is an emerging flavivirus posing threats to human health. The SIE between ZIKV and Japanese encephalitis virus (JEV) is investigated in this study. Our results demonstrate for the first time that JEV inhibits ZIKV infection in both mammalian and mosquito cells, whether co-infects or subsequently infects after ZIKV. The exclusion effect happens at the stage of ZIKV RNA replication. Further studies show that the expression of JEV NS2B protein is sufficient to inhibit the replication of ZIKV, and the outer membrane region of NS2B (46-103 aa) is responsible for this SIE. JEV infection and NS2B expression also inhibit the infection of the vesicular stomatitis virus. In summary, our study characterized a SIE caused by JEV NS2B. This may have potential applications in the prevention and treatment of ZIKV or other RNA viruses.IMPORTANCEThe reemerged Zika virus (ZIKV) has caused severe symptoms in humans and poses a continuous threat to public health. New vaccines or antiviral agents need to be developed to cope with possible future pandemics. In this study, we found that infection of Japanese encephalitis virus (JEV) or expression of NS2B protein well inhibited the replication of ZIKV. It is worth noting that both the P3 strain and vaccine strain SA14-14-2 of JEV exhibited significant inhibitory effects on ZIKV. Additionally, the JEV NS2B protein also had an inhibitory effect on vesicular stomatitis virus infection, suggesting that it may be a broad-spectrum antiviral factor. These findings provide a new way of thinking about the prevention and treatment of ZIKV.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Superinfecção , Proteínas não Estruturais Virais , Infecção por Zika virus , Animais , Humanos , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/metabolismo , Encefalite Japonesa/virologia , Estomatite Vesicular , Zika virus , Proteínas não Estruturais Virais/metabolismo
16.
Int J Antimicrob Agents ; 63(4): 107104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325720

RESUMO

OBJECTIVES: Antimicrobial resistance has raised concerns regarding untreatable infections and poses a growing threat to public health. Rational design of new AMPs is an ideal solution to this threat. METHODS: In this study, we designed, modified, and synthesised an excellent AMP, L-10, based on the original sequence of the Cyprinus carpio chemokine. All experimental data were presented as the mean ± standard deviation (SD), and the two-tailed unpaired T-test method was used to analyze all data. RESULTS: L-10 exhibited excellent antibacterial activity with negligible toxicity and improved the efficacy of a broad class of antibiotics against MDR Gram-negative pathogens, including tetracycline, meropenem, levofloxacin, and rifampin. Mechanistic studies have suggested that L-10 targets the bacterial membrane components, LPS and PG, to disrupt bacterial membrane integrity, thereby exerting antibacterial effects and enhancing the efficacy of antibiotics. Moreover, in animal infection models, L-10 significantly increased the survival rate of infected animals and effectively reduced the tissue bacterial load and inflammatory factor levels. In addition to its direct antibacterial activity, L-10 dramatically reduced pulmonary pathological alterations in a mouse model of endotoxemia and suppressed LPS-induced proinflammatory cytokines in vitro and in vivo. Lastly, L-10 was successfully expressed in Pichia pastoris and maintained antimicrobial activity against MDR Gram-negative pathogens in vivo and in vitro. CONCLUSION: Collectively, these results reveal the potential of L-10 as an ideal candidate against MDR bacterial infections and provide new insights into the design, development, and clinical application of AMPs.


Assuntos
Carpas , Infecções por Escherichia coli , Camundongos , Animais , Lipopolissacarídeos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Quimiocinas , Infecções por Escherichia coli/tratamento farmacológico , Testes de Sensibilidade Microbiana
17.
Vet Microbiol ; 290: 110006, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308931

RESUMO

Porcine infectious pleuropneumonia (PCP) is a severe disease of porcine caused by Actinobacillus pleuropneumoniae (APP). The spread of PCP remains a threat to the porcine farms and has been known to cause severe economic losses. The cAMP receptor protein (CRP) serves as a pivotal player in helping bacteria adapt to shifts in their environment, particularly when facing the challenges posed by bacterial infections. In this study, we investigated the role of CRP in APP. Our results revealed that crp mutant (Δcrp) strains were more sensitive to acidic and osmotic stress resistance and had lower biofilm formation ability than wild-type (WT) strains. Furthermore, the Δcrp strains showed deficiencies in anti-phagocytosis, adhesion, and invasion upon interaction with host cells. Mice infected with the Δcrp strains demonstrated reduced bacterial loads in their lungs compared to those infected with the WT strains. This study reveals the pivotal role of crp gene expression in regulating pleuropneumonia growth, stress resistance, iron utilization, biofilm formation, phagocytosis, adhesion, invasion and colonization. Our discoveries offer novel perspectives on understanding the development and progression of APP infections.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Pleuropneumonia , Doenças dos Roedores , Doenças dos Suínos , Animais , Suínos , Camundongos , Pleuropneumonia/microbiologia , Pleuropneumonia/veterinária , Biofilmes , Actinobacillus pleuropneumoniae/metabolismo , Proteína Receptora de AMP Cíclico/genética , Pulmão/microbiologia , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Doenças dos Suínos/microbiologia
18.
Microbiol Spectr ; 12(3): e0140123, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38305163

RESUMO

The African swine fever virus (ASFV) structural protein pA104R is the only histone-like protein encoded by eukaryotic viruses. pA104R is an essential DNA-binding protein required for DNA replication and genome packaging of ASFV, which are vital for pathogen survival and proliferation. pA104R is an important target molecule for diagnosing, treating, and immune prevention of ASFV. This study characterized monoclonal antibodies (mAbs) against pA104R and found them to recognize natural pA104R in ASFV strains with different genotypes, showing high conservation. Confirmation analyses of pA104R epitopes using mAbs indicated the presence of immunodominant B-cell epitopes, and further characterization showed the high antigenic index and surface accessibility coefficients of the identified epitope. Furthermore, the pA104R protein functions through the polar interactions between the binding amino acid sites; however, these interactions may be blocked by the recognition of generated mAbs. Characterizing the immunodominant B-cell epitope of the ASFV critical proteins, such as pA104R, may contribute to developing sensitive diagnostic tools and vaccine candidate targets.IMPORTANCEAfrican swine fever (ASF) is a highly pathogenic, lethal, and contagious viral disease affecting domestic pigs and wild boars. As no effective vaccine or other treatments have been developed, the control of African swine fever virus (ASFV) relies heavily on virus detection and diagnosis. A potential serological target is the structural protein pA104R. However, the molecular basis of pA104R antigenicity remains unclear, and a specific monoclonal antibody (mAb) against this protein is still unavailable. In this study, mAbs against pA104R were characterized and found to recognize natural pA104R in ASFV strains with different genotypes. In addition, confirmation analyses of pA104R epitopes using mAbs indicated the presence of immunodominant B-cell epitopes, and further characterization showed the high antigenic index and surface accessibility coefficients of the identified epitope. Characteristics of the immunodominant B-cell epitope of ASFV proteins, such as pA104R, may contribute to developing sensitive diagnostic tools and identifying vaccine candidate targets.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas , Camundongos , Suínos , Animais , Vírus da Febre Suína Africana/genética , Epitopos de Linfócito B , Febre Suína Africana/diagnóstico , Febre Suína Africana/prevenção & controle , Anticorpos Monoclonais , Sus scrofa
19.
Front Vet Sci ; 11: 1324768, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384951

RESUMO

Proliferative enteropathy caused by Lawsonia intracellularis is an important economic associated disease to pig industry, but the knowledge about the prevalence of L. intracellularis in pig farms in China is limited. In addition, there is no complete genome sequence available for L. intracellularis isolates from China. In this study, we developed a TaqMan qPCR for the screening of L. intracellularis by targeting the bacterial 16S rDNA gene. Laboratory evaluations revealed a good sensitivity and specificity on detecting L. intracellularis nucleic acid. Using this method, we investigated 891 fecal samples from apparently healthy pigs in 47 farms. The results demonstrated a screening positive rate of 37.3% (95% CI, 34.1-40.5%) for the samples, and a farm screening positive rate of 93.6% (95% CI, 65.3-94.4%). The screening positive rate at herd level ranged from 6.67% (95% CI, 0.2-31.9%) to 40% (95% CI, 38-79.6%), while at animal level, the highest screening positive rate was found in 12-week-old pigs [85.7% (95% CI, 67.3-96.0%)]. Investigation of 705 diarrheal or bloody feces from symptomatic pigs revealed that the highest positive rate was found in replacement gilts which was 37.18% (95% CI, 45.1-89.5%). Secondly, we conducted the complete genome sequence of a L. intracellularis PPE-GX01-2022 from China through PacBio sequencing. The genome of PPE-GX01-2022 consisted of a chromosome of 1,439,110 bp in length and three plasmids of 193,063, 39,799, and 27,067 bp, respectively. This genome encoded 1,428 predicted proteins, 44 tRNAs, and 6 rRNAs. Sequence comparisons demonstrated that the genome sequence of PPE-GX01-2022 was highly homologous to those of two isolates from US, and these three isolates shared 1,378 core genes. The screening results suggest a high prevalence rate of L. intracellularis in Chinese pig farms. In addition, the genome sequence of the Chinese isolate was highly homologous to those of the field isolates from the US.

20.
Mol Neurobiol ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372957

RESUMO

Numerous studies have shown that exosomes play a regulatory role in a variety of biological processes as well as in disease development and progression. However, exosome-mediated intercellular communication between brain microvascular endothelial cells (BMECs) and astrocytes during meningitic Escherichia coli (E. coli)-induced neuroinflammation remains largely unknown. Here, by using in vivo and in vitro models, we demonstrate that exosomes derived from meningitic E. coli-infected BMECs can activate the inflammatory response of astrocytes. A label-free quantitation approach coupled with LC-MS/MS was used to compare the exosome proteomic profiles of human BMECs (hBMECs) in response to meningitic E. coli infection. A total of 57 proteins exhibited significant differences in BMEC-derived exosomes during the infection. Among these proteins, growth differentiation factor 15 (GDF15) was significantly increased in BMEC-derived exosomes during the infection, which triggered the Erk1/2 signaling pathway and promoted the activation of astrocytes. The identification and characterization of exosome protein profiles in BMECs during meningitic E. coli infection will contribute to the understanding of the underlying pathogenic mechanisms from the perspective of intercellular communication between BMECs and astrocytes, and provide new insights for future prevention and treatment of E. coli meningitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...